Three Dimensional Manifolds All of Whose Geodesics Are Closed
نویسندگان
چکیده
Three Dimensional Manifolds All of Whose Geodesics Are Closed John Olsen Wolfgang Ziller, Advisor We present some results concerning the Morse Theory of the energy function on the free loop space of S for metrics all of whose geodesics are closed. We also show how these results may be regarded as partial results on the Berger Conjecture in dimension three.
منابع مشابه
Geodesic Intersections in Arithmetic Hyperbolic 3-manifolds
It was shown by Chinburg and Reid that there exist closed hyperbolic 3-manifolds in which all closed geodesics are simple. Subsequently, Basmajian and Wolpert showed that almost all quasi-Fuchsian 3-manifolds have all closed geodesics simple and disjoint. The natural conjecture arose that the Chinburg-Reid examples also had disjoint geodesics. Here we show that this conjecture is both almost tr...
متن کامل2 00 7 If all geodesics are closed on the projective plane
Given a C∞ Riemannian metric g on RP 2 we prove that (RP , g) has constant curvature iff all geodesics are closed. Therefore RP 2 is the first non trivial example of a manifold such that the smooth Riemannian metrics which involve that all geodesics are closed are unique up to isometries and scaling. This remarkable phenomenon is not true on the 2-sphere, since there is a large set of C∞ metric...
متن کاملOn three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
متن کاملNon-simple Geodesics in Hyperbolic 3-manifolds
Chinburg and Reid have recently constructed examples of hyperbolic 3manifolds in which every closed geodesic is simple. These examples are constructed in a highly non-generic way and it is of interest to understand in the general case the geometry of and structure of the set of closed geodesics in hyperbolic 3-manifolds. For hyperbolic 3-manifolds which contain an immersed totally geodesic surf...
متن کاملSpectral Properties of 4-dimensional Compact Flat Manifolds
We study the spectral properties of a large class of compact flat Riemannian manifolds of dimension 4, namely, those whose corresponding Bieberbach groups have the canonical lattice as translation lattice. By using the explicit expression of the heat trace of the Laplacian acting on p-forms, we determine all p-isospectral and L-isospectral pairs and we show that in this class of manifolds, isos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009